(function (exports) {
'use strict';
/**
* Accepts an array and range. Finds the maximum sum of elements
* around the middle of the range.
* @private
* @param {Array} array Input array.
* @param {Number} left Left interval of the range.
* @param {Number} middle Middle of the range.
* @param {Number} right Right side of the range.
* @return {Number} The maximum sum including the middle element.
*/
function crossSubarray(array, left, middle, right) {
var leftSum = -Infinity;
var rightSum = -Infinity;
var sum = 0;
var i;
for (i = middle; i >= left; i -= 1) {
if (sum + array[i] >= leftSum) {
leftSum = sum + array[i];
}
sum += array[i];
}
sum = 0;
for (i = middle + 1; i < right; i += 1) {
if (sum + array[i] >= rightSum) {
rightSum = sum + array[i];
}
sum += array[i];
}
return leftSum + rightSum;
}
/**
* @private
* @param {Array} array Input array.
* @param {Number} left Left side of the range.
* @param {Number} right Right side of the range.
* @return {Number} Maximum sum of the elements of
* subarray whithin the given range.
*/
function maxSubarrayPartitioner(array, left, right) {
if (right - left <= 1) {
return array[left];
}
var middle = Math.floor((left + right) / 2);
var leftSum = maxSubarrayPartitioner(array, left, middle);
var rightSum = maxSubarrayPartitioner(array, middle, right);
var crossSum = crossSubarray(array, left, middle, right);
return Math.max(crossSum, leftSum, rightSum);
}
/**
* Finds the maximum sum of the elements of a subarray in a given array
* using the divide and conquer algorithm by Bentley, Jon (1984).
* For example, for the sequence of values -2, 1, -3, 4, -1, 2, 1, -5, 4
* the contiguous subarray with the largest sum is 4, -1, 2, 1, with sum 6.
* <br><br>
* Time complexity: O(N log N).
*
* @example
* var max = require('path-to-algorithms/src/searching/'+
* 'maximum-subarray-divide-and-conquer').maxSubarray;
* console.log(max([-2, 1, -3, 4, -1, 2, 1, -5, 4])); // 6
*
* @public
* @module searching/maximum-subarray-divide-and-conquer
* @param {Array} array Input array.
* @return {Number} Maximum sum of the elements of a subarray.
*/
function maxSubarray(array) {
return maxSubarrayPartitioner(array, 0, array.length);
}
exports.maxSubarray = maxSubarray;
})(typeof window === 'undefined' ? module.exports : window);